MULTI-CRITERIA ANALYSIS FOR PLANNING RENEWABLE ENERGY (MapRE)

Attribute table descriptions for shape files and pdf maps

Blue highlighted cells indicate attributes that are specific to wind zones, orange highlighted cells indicate attributes specific to solar CSP zones, and yellow highlighted cells indicate attributes specific to solar PV. All other attributes are common between technologies.

For details on methods and calculations, please see Wu GC, Deshmukh R, Ndhlukula K, Radojicic T, Reilly J (2015) "Renewable Energy Zones for the Africa Clean Energy Corridor", *International Renewable Energy Agency and Lawrence Berkeley National Laboratory*, Berkeley, CA, LBNL#187271.

Last updated: 1st April 2018

ATTRIBUTE NAME	FIELD NAME	FIELD NAME	DESCRIPTION
	SHP FILE	SHP FILE	
	(Zones)	(Projects)	
zone_identification	zoneid	zone_id	This is the unique alphabetical identifier for the
			zones. Zones are labeled on the map using this
			identifier. Projects are subsets of zones.
Electricity generation attributes:			Estimated annual average electricity generation in
			MWh for the following:
A) Electricity_generation_discounted_MWhPerYr	egen	electgen	Solar PV, assuming a 90% land use discount factor.
B) Electricity_generation_discounted_chosenTurbine_MWhPerYr	egen_ch	electgen_c	Wind using the optimally selected IEC turbine
			class, assuming a 75% land use discount factor.

C) Electricity_generation_discounted_classIlturbine_MWhPerYr	egen_cii	electgen_0	Wind using IEC Class II turbines, assuming a 75%
			land use discount factor.
D) Electricity_generation_discounted_noStorage_MWhPerYr	egen_0h	electgen_0	Solar CSP without storage, assuming a 90% land use
			discount factor.
E) Electricity_generation_discounted_6hrsStorage_MWhPerYr	egen_6h	electgen_6	Solar CSP with 6 hours of storage, assuming a 90%
			land use discount factor.
Potential installed capacity attributes:			Potential capacity (MW) that could be installed
			within a zone for the following:
installedCapacity_MW	incap	installedc	Solar PV or wind, assuming a 90% and 75% land use
			discount factor, respectively.
installedCapacity_noStorage_MW	incap_0h	Installed	Solar CSP without storage, assuming a 90% land use
			discount factor.
installedCapacity_6hrsStorage_MW	incap_6h	Installed0	Solar CSP with 6 hours of storage, assuming a 90%
			land use discount factor.
area_km2	area_km2		Total area of the zone in units of square kilometers
Levelized cost of electricity (LCOE) of non-generation components			Average levelized cost of electricity (in USD/MWh)
attributes:			for the non-generation components of the following
			(values are only reported if transmission or
			substation data could be procured):
A) LCOE_transmission_USDperMWh	l_tra	p_transcos	Solar PV, estimated using distance to the nearest
			transmission line, if available.
B) LCOE_substation_USDperMWh	l_sub	p_subcost	Solar PV, estimated using distance to the nearest
			substation, if available.
C) LCOE_road_USDperMWh	l_road	p_roadcost	Solar PV, estimated using distance to the nearest
			road.
D) LCOE_transmission_chosenTurbine_USDperMWh	l_tra_ch	p_transcos	Wind using the optimally selected IEC turbine,
			estimated using nearest transmission line.
E) LCOE_substation_chosenTurbine_USDperMWh	l_sub_ch	p_subcost	Wind using the optimally selected IEC turbine,
			estimated using nearest substation.
F) LCOE_road_chosenTurbine_USDperMWh	l_road_ch	p_roadcost	Wind using the optimally selected IEC turbine,
			estimated using nearest road.
G) LCOE_transmission_6hrsStorage_USDperMWh	l_tra_6h	p_transcos	Solar CSP with 6 hours of storage, estimated using
			nearest transmission line.
H) LCUE_substation_6hrsStorage_USDperMWh	l_sub_6h	p_subcost	Solar CSP with 6 hours of storage, estimated using
			nearest substation.

I) LCOE_road_6hrsStorage_USDperMWh	l_road_6h	p_roadcost	Solar CSP with 6 hours of storage, estimated using
			nearest road.
Levelized cost of electricity (LCOE) of generation component			Average levelized cost of electricity (in USD/MWh)
attributes:			for generation component of the following
			technologies (values were estimated using the
			location's capacity factor and efficiencies specific to
			the technology):
A) LCOE_generation_USDperMWh	l_gen	p_lcoegen	Solar PV
B) LCOE_generation_chosenTurbine_USDperMWh	l_gen_ch	p_lcoegen_	Wind using the optimally selected IEC turbine
			class.
C) LCOE_generation_classIIturbine_USDperMWh	l_gen_cii	p_lcoegen0	Wind using IEC Class II turbine.
D) LCOE_generation_noStorage_USDperMWh	l_gen_0h	p_lcoegen_	Solar CSP without storage.
E) LCOE_generation_6hrsStorage_USDperMWh	l_gen_6h	p_lcoegen0	Solar CSP with 6 hours of storage.
Total levelized cost of electricity (LCOE) attributes:			Average total levelized cost of electricity estimated
			by summing the individual component LCOEs for
			generation, transmission line or substation (values
			are only available if data could be procured), and
			road for the following:
A) LCOE_total_transmission_USDperMWh	lt_tra	p_lcoetott	Solar PV, estimated using the transmission
			component.
B) LCOE_total_substation_USDperMWh	lt_sub	p_lcoetots	Solar PV, estimated using the substation
			component.
C) LCOE_total_transmission_chosenTurbine_USDperMWh	lt_tra_ch	p_lcoetott	Wind using the optimally selected IEC turbine
			class, estimated using transmission
D) LCOE_total_transmission_classIIturbine_USDperMWh	lt_tra_cii	p_lcoetot0	Wind using IEC Class II turbine, estimated using
			transmission
E) LCOE_total_substation_chosenTurbine_USDperMWh	lt_sub_ch	p_lcoetots	Wind using the optimally selected IEC turbine
			class, estimated using substation
F) LCOE_total_substation_classIIturbine_USDperMWh	lt_sub_cii	p_lcoetot1	Wind using IEC Class II turbine, estimated using
			substation
G) LCOE_total_transmission_noStorage_USDperMWh	lt_tra_0h	p_lcoetott	Solar CSP without storage, estimated using
			transmission
H) LCOE_total_transmission_6hrsStorage_USDperMWh	lt_tra_6h	p_lcoetot0	Solar CSP with 6 hours of storage, estimated using
			transmission

I) LCOE_total_substation_noStorage_USDperMWh	lt_sub_0	p_lcoetots	Solar CSP without storage, estimated using
			substation
J) LCOE_total_substation_6hrsStorage_USDperMWh	lt_sub_6	p_lcoetot1	Solar CSP with 6 hours of storage, estimated using
			substation
mean_slope_percent	m_slope	p_slope	Mean slope of the zone in units of percent rise.
mean_populationDensity_personsPerKm2	m_popden	p_popden	Mean population density of the zone in units of
			persons per square kilometer.
mean_HumanFootprint_0to100	m_humfoot	p_humanfoo	Mean human footprint metric (0 - least human
			impact; 100 - most human impact)
mean_LULC_score	m_lulc	p_lulc	Mean score for land use/land cover categories in the
			zone. Scores range from 1 to 5, with 1 being most
			compatible for energy development and 5 being least
			compatible.
Mean_colocation_score	m_coloc	p_sccoloc	Mean score for the suitability of the zone for other
		(mean of	renewable energy technologies. For example, the
		p_coloc_pv,	attribute table of a solar PV zone would display the
		p_coloc_cs,	colocation score calculated using the zone's overlap
		p_coloc_wi -	with wind and CSP potential. The score ranges from
		other two	0 to 1, with 0 being no overlap and 1 being overlap
		technologies)	with both renewable technologies.
Num_projectsWithWaterAccess	n_water	- (based on	Number of project opportunity areas within the zone
		d_wat)	that is within 10 km of surface water.
mean_resourceQuality_Wperm2	m_rq_wm2		Mean resource quality in terms of wind power
			density or solar irradiance of the zone in units of
			watts per m2.
mean_resourceQuality_kWhPerm2Day	m_rq_kwh		Mean solar resource quality of the zone in units of
			annual average kWh per m2 per day.
Capacity factor attributes:			Mean capacity factor of the zone for the following
			(values range from 0 to 1):
A) mean_capacityFactor	m_cf		Solar PV
B) mean_capacityFactor_chosenTurbine	m_cf_ch		Wind using the optimally selected IEC turbine
			class.
C) mean_capacityFactor_classIlturbine	m_cf_cii		Wind using IEC Class II turbine.
D) mean_capacityFactor_noStorage	m_cf_0h		Solar CSP without storage.

E) mean_capacityFactor_6hrsStorage	m_cf_6h		Solar CSP with 6 hours of storage.
area_chosenTurbine_classIII_km2	a_ch_ciii		Area (in km2) within the zone for which IEC class III
			turbines would be most suitable
area_chosenTurbine_classII_km2	a_ch_cii		Area (in km2) within the zone for which IEC class II
			turbines would be most suitable
area_chosenTurbine_classI_km2	a_ch_ci		Area (in km2) within the zone for which IEC class I
			turbines would be most suitable
Distance attributes:			Distance to the nearest following locations (in units
			of kilometers):
A) distance_nearest_transmission_km	d_trans	d_tra	Transmission line
B) distance_nearest_substation_km	d_sub	d_sub	Substation
C) distance_nearest_road_km	d_road	d_roa	Road
D) distance_nearest_existingPlanned_wind_km (or	d_wind,	d_win,	Operational or planned wind (or solar PV, solar
distance_nearest_existingPlanned_PV_km,	d_pv, d_csp	d_pv, d_csp	CSP) power plant.
distance_nearest_existingPlaned_CSP_km)			
E) distance_nearest_geothermalLocation_km	d_geo	d_geo	Operational or planned geothermal power plant.
F) distance_nearest_anyRenewableEnergyLocation_km	d_anyre	d_any	Operational or planned renewable energy (wind,
			solar PV, solar CSP, geothermal) power plant.
G) distance_nearest_majorCity_km	d_load	d_loa	Major city or load center.
H) distance_nearest_waterSource_km	d_water	d_wat	Surface water (lake or river) source.
GroupVal		groupval	Identifier that is used to assign a project opportunity
			area to a zone.
Capacity value attributes:			
A) distance_nearest_3TierWindLocation_km	d_windhour		From the centroid of the zone, distance in km to
			the nearest location where simulated wind speed
			time series data were acquired from 3Tier. Hourly
			time series were used to estimate capacity value
			ratios.
B) capacityValueRatio_10percentPeakHours	cvr_10per		The ratio of the capacity factor for the top 10% of
			hours with the largest electricity demand within a
			year (876 hrs) to the capacity factor of all hours
			within the same year (8760 hrs).
C) capacityValueRatio_chosen3peakHours	cvr_ch3h		The ratio of the capacity factor for the daily top 3
			hours with the largest electricity demand across an

		entire year (1095 hrs) to the capacity factor of all
		hours within the same year (8760 hrs).
D) capacityValueRatio_chosen3peakHours_multiyear	cvr_ch3h_m	The ratio of the capacity factor for the daily top 3
		hours with the largest electricity demand across an
		entire year, extrapolated to 10 years (10,950 hrs),
		to the capacity factor of all hours within the same
		10 years (87,600 hrs). 3Tier provided 10 years of
		hourly time series data for each point location.
E) adjustedCF_top10percent	cf_cvr_10p	The capacity factor of the top 10% of hours with
		the largest electricity demand within a year (876
		hrs). This value was estimated by multiplying the
		capacityValueRatio_10percentPeakHours with the
		mean_capacityFactor_chosenTurbine.
F) adjustedCF_top3hrs	cf_cvr_ch3	The capacity factor of the daily top 3 hours with
		the largest electricity demand across an entire
		year (1095 hrs). This value was estimated by
		multiplying the
		capacityValueRatio_chosen3peakHours with the
		mean_capacityFactor_chosenTurbine.

Additional notes:

- 1) Attribute table field names in shape files are truncated because of shape file constraints on number of characters.
- 2) Full attribute names provided in first column can be found in the pdf map.
- 3) Distances in "project" geospatial files are in meters, while distances in "zones" geospatial files are in km.
- 4) Resource quality not provided for "projects" due to licensing issues associated with raw resource data sets. Average resource quality data sets are not available on IRENA's Global Atlas and the World Bank's Global Solar and Wind Atlases.
- 5) Capacity factors may not be recorded for "projects" but can be derived from electricity generation potential and installed capacity.
- 6) Area for "projects" can be estimated using Shape_Area attribute.
- 7) Some attributes including capacity value and adjusted capacity factors are estimated only for "zones" and not "projects".